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Abstract: In the no longer existing South African journal Quæstiones Informaticæ, An
Approach to Defining Abstractions, Refinements and Enrichments was published by
Derrick Kourie more than twenty years ago. At some occasion, about two years ago,
Derrick Kourie had asked and encouraged me to review his original topics, such as to re-
construct and re-present them from a different perspective. In this festschrift chapter,
in honour of Derrick Kourie’s 65th birthday, I outline the results of my attempt at
fulfilling Derrick Kourie’s collegial request. For this purpose I shall first recapitulate
the key concepts of Kourie’s original paper, since that paper has more or less fallen into
oblivion and cannot be easily retrieved from the public domain any more. Thereafter
Kourie’s notions of abstraction, refinement and enrichment are re-defined in a different
(more classical) theoretical framework. Finally those notions are contextualised with
respect to the related notion of retrenchment developed since the mid-1990s by Banach,
Poppleton, et al.

1 Motivation and History

Notions of abstraction, refinement and enrichment are relevant for many practical activities in
software engineering, including (for example): super-classes in object-oriented programming
(abstraction), model-driven software development from specifications to implementations
(refinement), or the definition and construction of software product lines as families of related
software systems (enrichment).

In a 1989-article published in the no longer existing journal Quæstiones Informaticæ,
Derrick Kourie had noticed the practical relevance of those above-mentioned notions as well
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as lack of a unifying theory to bring those tightly related notions under one consistent and
coherent theoretical roof [14]. In that paper Kourie had presented his early ideas about
such a theoretical framework, which was then based on first-order predicate logic together
with a tuple-structured universe (extension) and a non-standard trivalent truth function in
{T, F,⊥}.

In the early approach of [14], however, important background notions (such as the prag-
matic notion of relevance) were presented with much appeal to intuition, and the notion of
abstraction was overloaded with ambiguity insofar as Kourie had spoken in [14] about ab-
stract entities as well as about abstract properties. Also the crucial notion of enrichment was
only with much appeal to intuition. Last but not least the use of a trivalent truth function
in [14] was not elaborated in detail —what was the role and purpose of the undefined truth
value ⊥ in that theoretical framework?— and the structure of a specific, particular universe
of discourse —containing specifically tuples instead of simply anything— as the underlying
semantic domain was also not compellingly motivated in [14].

With those or similar considerations in mind, Kourie had occasionally (about two years
ago) asked me to revisit his original article, and to present a reconstruction of his original
ideas from a different theoretical perspective. The remainder of this Festschrift chapter
in honour of Derrick Kourie’s 65th birthday describes my attempt at fulfilling his collegial
request. For this purpose I shall in the following section recapitulate the main concepts of
Kourie’s original paper because that paper had more or less fallen into oblivion and cannot
be easily retrieved any more. In the subsequent sections I outline the notions of abstraction,
refinement and enrichment in a classical-logical manner and bring them into context with
the related, more recent, notion of retrenchment specifically developped for the domain of
software engineering by Banach, Poppleton, et al.

2 Recapitulation of Kourie’s 1989-Paper

Paper [14] was motivated by Kourie’s often-expressed desire for theoretical consolidation
of hitherto unrelated concepts and notions in the fields of computer science and software
engineering: “It would seem, therefore, that there is a need to develop a unified formal theory
of abstractions and refinements so as to sharpen and shape the ideas of those who are involved
in software development and in the practice of AI. Towards this end, the present paper
proposes generic definitions for these concepts, and for several concepts directly associated
with these. In particular, the notion of enrichment seems to be long naturally with that of
refinement” [14](p.174).

2.1 Preliminaries

The elaboration of [14] was based on first-order predicate logic together with a set-theoretic
interpretation, in which particularly the union of sets, X ∪ Y , was relevant. “` P” was
explicated as “Predicate P is true”, and “P → Q” was explicated as “Predicate Q logically
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follows from predicate P” [14] without particular differentiation between a syntactic versus
a semantic notion of logical implication or consequence.

Notation and treatise in [14] were, however, only semi-formal and appealed to its reader’s
intuition at several places. Such semi-formality of expressions does not only make it hard
to grasp the subtleties of the ideas and intentions ‘behind’ the original paper [14] in its full
length: it makes it even harder to reproduce those ideas adequately and understandably in
this Festschrift chapter in which Kourie’s original paper cannot be reproduced as a whole,
line by line, for obvious reasons.

For these reasons, also one of the reviewers of the draft of this chapter (before its pub-
lication) had a number of subtle questions concerning some finer theoretical details of this
elaboration. Not all of questions I was able to answer fully, because I would not have been
able to ‘ground’ such answers solidly in the positively given historical material of [14] as it
stands. This is a hermeneutical problem well known to any historian working on the basis of
texts in the faculties of the humanities. Nevertheless I was surprised to recognize —by means
of the reviewer’s questions and comments— that “history” (including all its hermeneutical
problems) in the field of computer science does not seem to be much farther than just about
twenty years away from now.

2.2 Domain of Discourse

“A domain of discourse is represented by a pair of sets: an entity set and a property set re-
spectively. The pair is denoted by <Ent,Prop>. Apart from being non-empty, no assumption
about the cardinality of these sets is made” [14](p.174). This entity-property-approach in
[14] seems to hint already at Kourie’s later, well-known, long-term research interests into the
topic of lattice-theoretical formal concept analysis [10], which is also entity-property-based.
In that context, ‘entities’ E were intuitively regarded as apparently un-typed constants (of
whatever kind) —no type system was mentioned in [14], in spite of Russell’s well-known
paradox for arbitrary sets of un-typed entities— whereas properties were represented by
clauses p(E) in which each literal sub-clause comprised E as one of its arguments. From
a pragmatic (i.e.: purposeful) modelling point of view it was taken for granted that “only
properties which are considered directly relevant in the domain of discourse are included in
Prop. However, it will be assumed that if a clause is considered relevant then each separate
literal in the clause together with its negation is also in Prop” [14](p.175).

Interpretation was defined as I : (Ent × Prop) → {T, F,⊥} whereby three notations
“` p(E)”, “` ¬p(E)”, “?p(E)” were used accordingly for the three possibilities of I(E, p(E)).
Consequently: “Each entity, Ei, thus partitions Prop into three sets called the true, unknown
or false property sets of Ei”. Moreover: “It can be easily shown, using the assumption of
consistency in 3-valued logic, that if Prop and true(Ei) are given, then it is possible to
infer false(Ei) and unknown(Ei)” [14]. Thus, for clarification: The semi-formal expression
“true(E)” in [14] was obviously meant to denote, intuitively, some set of entities for which
some given property p holds true, such that ∀e ∈ E ∃I: I(p(e)) = T — accordingly also for
false(E) and unknown(E). Those considerations also presumed “that the truth value of a
property assertion in a domain of discourse is fixed over time, space, environment, etc. It is
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either true (or false) under all circumstances (or modalities), or else it has value ‘unknown’ —
even” (if) “it is known to be true (or false) in some circumstances”. In other words: Kourie’s
system was intended for the modelling of static systems, (though it might —perhaps— have
been possible to capture dynamic systems via some static representation of their completed
trace trajectory from start to termination).

Last but not least, in this sub section: “It is interesting to note that entities may be
characterized as either deterministic or non-deterministic in terms of the foregoing model.
An arbitrary entity Ei ∈ Ent is deterministic iff unknown(Ei) = ∅. An entity which is
not deterministic is non-deterministic” [14](p.175). There the term ‘deterministic’, which
is usually applied to dynamic processes, not to static entities, was somewhat mis-used:
obviously the intended meaning was that an entity could be completely ‘determined’, or
‘known’, as far as all its properties are concerned. From a computational point of view I
may also remark that such an explicitly trivalent logical model is not so easy to implement.
Typically the ‘unknown’ property ⊥ is ‘characterized’ only implicitly by the non-termination
of a model-checking algorithm in a bivalent logic. Alternatively to a trivalent domain of
truth values one can always lift the ‘unknown’-information up onto the level of predicates
(by introducing a suitable meta-predicate U) and thus reduce the trivalent to a classical
bivalent logic in T and F.

2.3 Property Definitions

As mentioned above, notation and treatise in [14] were only semi-formal and appealed to the
reader’s intuition at several occasions. For the understanding of this sub section —as well as
for this entire chapter— it must always be kept in mind that Kourie had used in [14] some of
the usual well-known elements or snippets of logic syntax in order to support the expression
of his novel ideas, but he had not elaborated a logical ‘theory’ in a strictly formalistic sense of
the term ‘theory’. This is also the reason why one can find in [14] a peculiar ambivalence as
far as the type of logic is concerned: Though Kourie expressed himself in [14] in the symbols
of pure propositional logic (on the lexical level), i.e.: without ‘∀’ and ‘∃’, he seems to have
had a first-order logic in mind (on the hermeneutical level). Even the use of the syntactical
symbols was occasionally ‘non-standard’ in [14].

Anyway: “In this section two arbitrary properties px(E) and py(E) in Prop are considered,
and for conciseness they are denoted by x and y respectively. The notation x → y is used
to assert that y logically follows from x. A necessary condition for this to hold is that every
entity in Ent which has property x (and by assumption there will be at least one such entity)
also has property y. Conversely, ¬[x → y] asserts that y does not logically follow from x. A
sufficient condition for this to hold is that some entity in Ent which has property y (and by
assumption there will be at least one such entity) does not have property x” [14](p.175). At
this point one can see again a peculiar ambiguity between semantic (or model-theoretic) and
syntactic (or axiomatic-deductive) notions of ‘follows logically’. Nevertheless, the following
definitions were then provided on the basis of those preliminaries:

• “Property x refines property y iff ` ([x → y] ∧ ¬[y → x])
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• Properties x and y are equivalent iff ` ([x → y] ∧ [y → x])

• Properties x and y are independent iff ` (¬[x → y] ∧ ¬[y → x])

• Properties x and y enrich one another iff they are independent, but are common pro-
perties of at least one entity in Ent.

• Properties x and y are mutually exclusive iff they are independent but do not enrich
one another” [14](p.175).

Here are some simple clarifying examples:

• ‘sky-blue’ refines ‘blue’.

• ‘loud’ and ‘noisy’ are equivalent (at least approximately just for the sake of this exam-
ple, which immediately motivates the question whether or not any exactly equivalent
properties can be discovered empirically in the physical world).

• ‘blue’ and ‘noisy’ are independent.

• ‘noisy and ‘silent’ are mutually exclusive.

Considering the novelty of the concept of enrichment at the time of [14] the ‘wordy’ infor-
mality (hence: unclarity) of its definition was probably the weakest point of that paper,
particularly since also no illustrative examples were provided in [14]. Moreover, as the defi-
nition of properties in [14] were always entity-based properties p(E) (extensional approach:
a kind of nominalism), and never regarded as entity-independent universals (which would
have been an intensional approach), the definitions of above lacked accurate quantification
(‘∃’ or ‘∀’) as far as the underlying sets of entities are concerned. With the theoretical tools
provided by the —later— formal concept analysis (FCA) [10] it would have been quite easy
to resolve those early informality-ambiguities in a concise and elegant manner.

Anyway that sub section concluded with Kourie’s assertion that “any pair of properties
that an entity has either enrich one another, or one of them refines the other” [14](p.175).
As it will shown below in subsequent sections of this chapter, already the classical logical
terminology provided concepts for such semantic relations.

2.4 Abstraction

“Consider two distinct entities Ei and Ej in Ent. Ej is defined as an abstraction of Ei,
iff true(Ej) is a subset of true(Ei)” [14](p.175). One of the reviewers of the pre-published
draft of this chapter had asked why a similar notion of abstraction was not also defined in
the domain of false(E), but this question cannot be answered on the basis of the factually
given historical material of [14]. Anyway, because of the extensional approach in [14], this
definition of the notion of abstraction also had implications as far as the previously defined
sets unknown(.) and false(.), as well as their various sub set relations, are concerned. Those
considerations particularly entailed (amongst others) Kourie’s following informal assertions:
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• “Properties in true(Ei) but not in true(Ej) are in unknown(Ej). Similarly properties
in false(Ei) but not in false(Ej) are also in unknown(Ej). Informally, therefore, there
is a parallel between abstraction and non-determinism. The degree of abstraction is
directly related to the degree of non-determinism.

• An entity may be an abstraction of several entities which may be, but need not be
abstractions, of one another” [14](p.176).

The first one of those two points indicates quite clearly that Kourie wanted to avoid any
‘closed-world’ assumptions characterized by the classical tertium-non-datur axiom, though
Kourie’s original work [14] did not motivate very explicitly the rationale behind his pref-
erence for an ‘open-world’ model — possibly he might also have had some particular AI
scenarios in mind, for which the classical-logical tertium-non-datur models would have been
too restrictive or inadequate.

Also the second point (of above) is interesting from nowadays perspective, because Kourie
had defined the notion of abstraction on the basis of entities, whereas his notion of refinement
was defined on the notion of properties. Because of those different basis notions —entities
versus properties— Kourie’s notions of abstraction and refinement appear somewhat ‘orthog-
onal’ againt each other, whilst the ‘canonical’ interpretation of abstraction and refinement
had simply regarded them as inversely related concepts (with abstraction as a kind of anti-
refinement).

Those informal definitions also motivate some philosophical-ontological questions about
the ‘nature’ of those entities in the universe of discourse. ‘Brute’ entities, in their individual-
substantial uniqueness, which John Duns Scotus had dubbed ‘haecceitas’), could never be
abstractions of one another from an ontological point of view. The fact, however, that Kourie
has postulated the possibility of some entities to be abstractions of other entities, implies that
those entities must be of composite nature, such as —for example— software specification
documents at various degrees of richness in detail. This ontological implication, however, is
at odds with the earlier stipulation: “Each Ei ∈ Ent is a constant symbol which is interpreted
as a distinct entity of interest in the domain of discourse” [14](p.174). Those entities seem
to be the kind of ‘brute’ individual substances to which the notion of ‘haecceitas’ by
Duns Scotus seems appropriately applicable, in logical and ontological contradiction to the
assertion of above according to which an entity “may be an abstraction of several entities”
[14](p.176). Indeed, as also this chapter’s reviewer has noticed: Kourie’s theoretical scheme
is only consistent with a Scotian notion of entities if a universal for Duns Scotus may itself
be an individual instance of some higher universal. However, it would be difficult to find
evidence of such thinking in the texts of Scotus who had clearly stated that “haecceitas est
singularitas” [12].

Last but not least in this sub section there seem to be conceptual problems with an
explicit implementation of the postulated unknown-set from a constructive computational
point of view (i.e.: if one could implement it, how could it then be ‘unknown’, and if it
would be unknown in the genuine sense of the word, how would it then be possible to reason
about it computationally effectively?), as well as with some peculiar equivocation in the
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notions of ‘determinism’ and ‘non-determinism’ which are usually applicable to dynamic
processes, (as opposed to static entities).

2.5 Refinement/Enrichment

“Based on these notions, an entity may sometimes be regarded as a refinement or an enrich-
ment of one or more of its abstractions” [14](p.176). At this point it must be kept in mind
that Kourie had unconventionally defined refinement as a relation between two properties
universal over entities, whereas abstraction was defined as a relation between two entities
universal over properties — I shall further clarify these relations by means of the classical
notion of residuum in a subsequent section of this chapter. Based on a property-difference
set D, which “is the set of properties that Er has in addition to those in Ea”, whereby Er

and Ea were individual entities, too, the following definitions were stipulated in Kourie’s
paper:

• “Entity Er is a refinement of entity Ea iff every property in D refines some property
in true(Ea).

• Entity Er is a enrichment of entity Ea iff every property in D enriches all property in
true(Ea)” [14](p.176).

No further explanation was provided about the choice of ∃ (“some”) in the definition of
refinement versus the choice of ∀ (“all”) in the definition of enrichment. Thus, without such
motivations, those early definitions still had some flavour of ad-hoc-ness to them. That sub-
section was concluded with the following additional explanation: “Note that if some (but
not all) properties in D refine properties in true(Ea), and the remaining properties in D
enrich all properties” (in) “true(Ea), then Er neither refines nor enriches Ea” [14](p.176).
Only very recently, in his book on correctness by construction co-authored with Watson,
Kourie exemplified those rather abstract ideas more concretely when he restricted the notion
of enrichment to a more specific application domain, namely object-oriented programming
(OOP), and suggested that some sub class E to some given class A should be regarded as
an enrichment of A “if and only if E introduces new members but does not override any
inherited members of A” [15](p.47).

2.6 Corollaries

In the original text a sub-section entitled Corollaries succeeded those definitions and brought
home a larger number of small lemmata about the various meta-relations between those
basically set-theoretical concepts and relations, such as (non-) reflexivity, (non-) transitivity,
etc. Most important in that sub section, from an ontological point of view, is a point in
which Kourie now also conceded explicitly that his notion of abstraction implies a particular
ontological committment as far as the entities Ei ∈ Ent were concerned:

• “The entity set may be partitioned into two sets: a set of entities which are abstractions
of other entities and a set containing the remaining entities. Elements of the latter set
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may appropriately be called concrete entities in the domain of discourse, and elements
of the former, abstract entities” [14](p.176).

This is obviously similar to the concept of abstract super-classes versus instantiatable sub-
classes in the realm of object-oriented programming, which started to become popular during
the time in which Kourie wrote and published his article, (though Kourie himself did not
mention this analogy). Moreover:

• “Entity refinement and entity enrichment are mutually exclusive notions.

• If an entity Ea is an abstraction of entity Er, and” (the) “latter has exactly one more
property in its property set than the former, then Er either refines Ea or Er enriches
Ea” [14](p.176).

Those lenghty and informal definitions leave the reader alone with some feeling of confusion,
because ‘intuitively’ the two notions of enrichment and refinement seem to be ‘somehow
related’ (via the notion of abstraction), in spite of Kourie’s conjecture that they would be
mutually exclusive. Also somewhat puzzling in the point of above is the emphasis on “one”
more property — what would be the relation between Ea and Er if the latter would have
exactly two or three more properties in its property set than the former?

Without any motivating examples, all those early definitions and corollaries must have
appeared to their readers as somewhat arbitrary. The newer notion of retrechment, which
shall be discussed in one of the subsequent sections of this chapter, will shed some additional
light on this conceptual problem.

2.7 Base Abstractions

Another conceptual difficulty in [14] arose from Kourie’s terminological ‘overloading’ of his
concepts of abstraction, refinement and enrichment for both entities and properties. The
informal (and thus unclear) treatment in the original text’s sub section entitled Base Ab-
stactions reveals this confusing ‘overloading’:

“If a given property in Prop refines another in Prop, it will be called a refining property.
All those properties in Prop which are not refining are called base properties. Note the
following:

• Every pair of base properties in the property set of an arbitrary entity enrich one
another.

• A refining property always refines at least one base property, but may also refine one
or more other properties.

• The property set of any entity Ei can be uniquely partitioned into a non-empty set of
base properties, and a (possibly empty) set of refining properties. These sets will be
denoted by bas(Ei) and ref(Ei) respectively.
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An abstraction Ej of Ei which is such that true(Ej) = bas(Ei) will be called a base abstraction
of Ei, and will be denoted by ba(Ei)” [14](p.176).

No motivation (nor illuminating example) for this introduction of the notion of base
abstraction was provided. Only a subtle pragmatic hint at the intended purpose of base
abstractions was given in the final paragraph of that sub-section, according to which “in
applying progressive refinement and/or enrichment to arrive at the properties of an entity
Ei, much of the initial creative effort will go into determining bas(Ei), and indeed into the
base abstraction of Ei if it exists” [14](p.176).

Moreover it must be kept in mind that the ‘property set of an entity’ in the terminology
of [14] is not identical with the set true(E). From the perspective of some given property
p there can be many entities which have this property, whereas from the perspective of
a given entity e there can be many properties which this entity has: this multi-relation
between many properties and many entities is further elaborated in the theory of formal
concept analysis, FCA [10], which later became one of Kourie’s favourite theories to work
with in the fields of computer science and software engineering. Nevertheless, in spite of the
vagueness of those hints (and particularly the informality of the notion of base abstraction),
it seems fair to say that much of nowadays model-driven development (MDD) proceeds in
some or another manner on the abstract-to-concrete path via refinement and/or enrichment,
such that Kourie’s early ideas expressed in [14] can be appropriately re-interpreted and
re-understood within the ‘hermeneutical horizon’ of MDD and OOP.

The reminder of Kourie’s paper [14], which cannot be (and also does not need not be)
recapitulated in detail for the purpose of this Festschrift chapter, consisted in yet another
section on algebraic properties (particularly ordering relations > and ≥) and finally a liter-
ature discussion section entitled ‘Other Work’, which ended with Kourie’s words: “To the
author’s knowledge the theme of enrichment has not been formally addressed in the literature
on software development” [14](p.178).

2.8 Intermediate Summary

According to [14] —though not always explicated formally and clearly— both refinement
and enrichment are meant to add details to some abstract entity. Particularly the notion
of enrichment was Derrick Kourie’s novel contribution to the body of knowledge of software
modelling in the year 1989. Though both refinement and enrichment add details to some
abstract entity, they do so in specifically different manners. This difference is related in [14]
to the notion of implication (or logical consequence) in a positive as well as in a negative
mode:

• Refinement, according to [14], adds details to some abstract entity (in such a manner
that a formal (logical) relation, (namely →), will hold between the abstract entity and
its corresponding refining entity.

– For example: an entity which is red and hot is certainly red, whereas an entity
which is red is not necessarily red and hot.
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• Enrichment, on the contrary, adds information to some abstract entity in such a manner
that this logical relation, (namely →), does not hold between the abstract entity and
its corresponding enriching entity.

In the philosophy of science [7] [8], this difference is well-known as the difference between
‘The Formal’ (logical) and ‘The Material’ (empirical), whereby ‘new’ empirical knowledge in
the material sciences consists exactly in those statements which cannot simply be deduced
mechanically from some a-priori axioms via the rules of a formal calculus. Philosophically,
‘The Formal’ is also associated with the notion of neccessity, whilst ‘The Material’ relates to
the notion of contingency. For comparison: Kourie’s logico-deductive notion of refinement
in [14] would thus also relate to some old ideals of reasoning in Kant and Hegel in which new
knowledge (with more and finer details) was hoped to emerge purely rationalistically, and
with necessity, by some kind of logical conceptual unfolding, from some primordial a-priori
concepts to their further necessary implications, in the mind of the philosopher.

To further illustrate the relation between refinement and enrichment somewhat aphoris-
tically I might say that, according to ‘the spirit’ (though not literally ‘the letter’) of Kourie’s
1989-paper, refinement is a kind of formal-logical enrichment, whereas enrichment is a kind
of material-empirical refinement. Both are, of course, variations of specialisation, which
diminish the extent of un-certainty of something, (whilst abstraction is related to the op-
posite of specialisation, namely generalisation). Therefore, from my science-philosophical
perspective, it remains debatable whether or not refinement and enrichment are really and
categorically that much “mutually exclusive” as they had been portrayed in [14]. My elab-
orations in the subsequent sections shall shed some additional light on this issue.

3 Related Work

Whilst Kourie’s notion of enrichment in computer science and software modelling has re-
mained rather unique since the publication of his 1989-paper [14], various notions of abstrac-
tion and refinement are now commonplace and appear in countless publications. Contrary to
Kourie’s static universe of discourse Ent in [14], refinement is now a well-established notion
also in the formal treatment of dynamic systems with methods and languages such as CSP,
B, Event-B, and the like, where it often refers to relational properties of the traces which
such dynamic systems can observably emit. I shall keep the discussion of these matters
brief in this section, because they are nowadays commonplace in the computer science and
software engineering literature. The refinement-related notion of retrenchment (by Banach,
Poppleton, et al.), however, deserves some additional attention because —similar to Kourie’s
notion of enrichment— retrenchment, too, is related to the notion of refinement in a subtle
manner which is not easy to grasp at a superficial first-glance level.

3.1 Abstraction

A recent paper by Colburn and Shute [9] is interesting because it discusses abstraction from
a perspective of meta-informatics, i.e.: the sub-field of philosophy of science about informat-
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ics. Paper [9] is thus not a technical computer science or software engineering paper which
would somehow simply ‘use’ or ‘apply’ some particular notion of abstraction as ‘given’. This
paper will therefore be recapitulated first. Thereafter follows a brief overview of the notion
of abstraction in the seminal trilogy on software engineering by Bjørner, as an example of
a technical (rather than philosophical) contribution from within the domain of computer
science and software engineering. According to [9], “philosophy of computer science should
be able to characterize abstraction as it occurs in computer science, and also relate it to
abstraction as it occurs in its companion, mathematics”. In their paper the authors show
“that the fundamental nature of abstraction in computer science is quite different from that
in mathematics. In doing so, we appeal to the ways in which abstraction actually facilitates
the creation of software” [9]. In other words, those two different notions of abstraction are
related to the different practical goals to which mathematics and computer science are com-
mitted. “In summary, abstraction has been characterized in philosophy, mathematics, and
logic as the process of eliminating specificity by ignoring certain features. We will show that
abstraction in computer science is fundamentally different by first focusing of mathemat-
ics and computer science” [9]. Subsequently the authors specifically identified information
hiding as the notion of abstraction particularly suitable for computer science, though the
mathematical notion of abstraction can also occur in computer science so far as mathemat-
ical concepts and techniques are also used as auxiliary means in the domain of computer
science. Unlike in pure mathematics, which is a formal as opposed to a material science
[7](p.27), “there are aspects of computer science which cannot be ‘abstracted away’ to make
them cleaner, as” (it) “is done in mathematics. This point is all too often ignored by those
who emphasize a mathematical paradigm for computer science” [9]. In other words, “abstrac-
tion in mathematics facilitates inference, while abstraction in computer science facilitates the
modeling of interaction” [9]. Abstraction in mathematics is twofold: On the one hand it is
used to remove material meaning for the sake of pure form, and on the other hand it is used
to filter the relevant from the irrelevant details. “As all students of logic learn, for example,
it is the form of modus ponens that makes it valid, and not the meaning of the sentences that
comprise it. So mathematical abstraction in this sense eschews any nonlogical meaning” [9].
On the other hand in mathematics “another kind of abstraction is employed when deciding
that certain properties, the color of a right triangle, or the processing speed of a computing
device, are irrelevant when reasoning about the properties of the class of such things as a
whole. This kind of abstraction makes judgments about what is essential to a concept and
what is not” [9]. Consequently “there are at least two kinds of abstaction in mathematics:
the emphasis of form over content, and the neglect of certain features in favor of others”
[9]. Colburn and Shute have characterized this meta-mathematical notion of abstraction
as information neglect. As mentioned above, information neglect also occurs in computer
science wherever mathematics is applied in computer science as an auxiliary tool. “It is our
contention, however, that computer science is distinguihed from mathematics in the use of a
kind of abstraction that computer scientists call information hiding” [9]. Information hiding,
as opposed to information neglect, does not delete any information which would be needed
for the purpose of constructing operational technical systems: one only constructs another
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layer of indirection, with less details, on top of a layer which contains those details. Much
of the remainder of Colburn’s and Shute’s article was dedicated to the illustration of this
argument by many examples from various sub-fields of computer science and software engi-
neering, including data abstraction, procedural abstraction, class design patterns, software
architecture patterns, layered operating systems, virtual machines, and the like [9]. In this
context of informatics Colburn and Shute have even regarded a Byte as an information hid-
ing abstraction of several Bits [9], which is particularly interesting because their Byte/Bits
example comes very close to classical philosophical notions of concept abstractions, for ex-
ample the abstraction of an accumulation of somehow related ships as a ‘fleet’. Whether
such a fleet (Byte) ‘really’ exists, or whether ‘fleet’ (‘Byte’) would merely be a name for
a collection of ships (Bits), was an issue of dispute over the existence or non-existence of
universals since the scholastic philosophy of the middle ages.

In his seminal trilogy on software engineering, Bjørner has discussed his notion of ab-
stration particularly in volumes 1 [4] and 2 [5]. “By an abstraction we shall understand a
formulation of some phenomenon or concept of some universe of discourse such that some
aspects of the phenomenon or concept are emphasised (i.e., considered important or rele-
vant while others are left out of consideration (i.e., considered unimportant or irrelevant)”
[4](p.231). In fact his entire chapter 12, with over 30 pages, in volume 1 is dedicated to
the notion of abstraction, such that it cannot be concisely summarized here. Here it is only
important to note a further conceptual distinction in [4] between the two sub-notions of
property-oriented versus model-oriented abstraction:

• “By a property-oriented abstraction we shall understand an abstraction of some phe-
nomenon or concept of some universe of discourse such that the abstraction is primarily
or solely expressed in terms of logical properties.

• By a model-oriented abstraction we shall understand an abstraction of some phe-
nomenon or concept of some universe of discourse such that the abstraction is pri-
marily or solely expressed in terms of mathematical entities such as abstract tokens,
sets, Cartesians, lists, functions, etc.” [4](p.231).

These two sub notions do not logically exclude each other, such that a property-oriented
abstraction (in the terminology of Bjørner) could at the same time also be a model-oriented
abstraction. Whereas Bjørner’s notion of property-oriented abstraction is obviously in close
proximity to Kourie’s earlier theory (including even the very term ‘universe of discourse’)
[14], Bjørner’s notion of model-oriented abstraction seems to stand in closer proximity to
the notion of information-hiding abstraction as identified in the above-mentioned paper by
Colburn and Shute [9]. In his volume 2 [5], Bjørner treated yet two further sub notions of
abstraction, namely hierarchical versus compositional abstraction, defined as follows:

• “By a hierarchical abstraction we mean a description (or a development) which ini-
tially emphasises the overall structure of the phenomenon (‘thing’, system, language)
being described (or developed) as decomposable into parts and which then proceeds
to emphasise the further decomposition of parts into subsidiary such, etc., descending
downwards a final emphasis on the atomic parts of the phenomenon or concept.
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• By a compositional abstraction we mean a description (or a development) which initially
emphasises (i.e., presents or develops) the atomic parts of the phenomenon or concept
being described (or developed) and which then proceeds to emphasise the composition
of concepts from atomic parts, etc., ascending towards a final emphasis on the whole
phenomenon or concept as composed from parts” [5](p.38).

Hierachical abstraction is thus associated with a “Top-down” approach whereas composi-
tional abstraction is associated with a “Bottom-up” approach of software construction [5].
Those definitions from volume 2, however, which Bjørner wrote for software engineering
practitioners, are so lengthy and ‘wordy’ that they cannot easily be formalised. Conse-
quently it is not only difficult to analyse in which type of relation compositional abstraction
and hierarchical abstraction stand to each other —e.g.: are they mutually exclusive from a
formal-logical point of view?— but it is also hard to relate both of them back to the two
previous sub-notions, property- versus model-oriented, of abstraction from volume 1 — e.g.:
is compositional abstraction always also a model-oriented abstraction? (and the like).

There is no need to emphasize that much more literature on the notion of abstraction
could be cited and discussed at this point. In many cases, however, the definitions and notions
of abstraction given in the literature are domain-specific rather than science-philosophically
general notions. A famous example is the notion of λ-abstraction in the Lambda Calculus
[3](p.6). Liu, in his textbook on formal engineering [17](p.243), mentioned ‘abstract design’
without having provided any definition of abstraction as such, whereas Kourie briefly men-
tioned —also without going into details— the notion of object-oriented ‘class abstraction’ in
his textbook on correctness by construction co-authored with Watson [15](p.46).

3.2 Refinement

The literature on refinement has grown so vastly during the decades since the publication
of [14] that there is no hope of presenting a comprehensive synopsis of it in this chapter.
Process refinement (dynamic) as well as data refinement (static) are known, whereby data
refinement is also known as reification [16] [4](p.587, p.628). The experts further distinguish
between refinement as a software engineering activity and refinement as a result or product
of such activity.

Bjørner has provided this very general and informal definition: “Refinement is a rela-
tion between two specifications: One specification, D, is said to be a refinement of another
specification, S, if all the properties that can be observed of S can also be observed in D.
Usually this is expressed as D v S. (Set-theoretically it works the other way around: in
D ⊇ S, D allows behaviours not accounted for in S.)” [4](p.628). A long list of further
refinement literature references, considering conceptually and technically different notions
of ‘refinement’, can be found in [2]: “Not all of these are compatible, in the sense that a
development step which is a refinement according to one notion may not be one according
to another; see [...] for some relevant discussion” [2](p.302).

In his most recent textbook co-authored with Watson, Kourie has (re-)defined his no-
tion of refinement in the domain of specifications in terms of a logical satisfaction prob-
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lem: “Spec(P, S, Q) v Spec(P ′, S ′, Q′) if and only if ∀C : GCL · Sat(C,Spec(P ′, S ′, Q′))
=⇒ (Sat(C,Spec(P, S, Q))” [15](p.35), and then linked this definition with the well-known
refinement rules about stronger pre-conditions [15](pp.35-36) and weaker post-conditions
[15](p.36). Here it is interesting to note that Kourie did not directly define the notion of
refinement in terms of those pre- and post-condition rules. A few pages further, Kourie then
defined, rather informally, a domain-specific notion of ‘class refinement’ as follows: “Suppose
R is a subclass of class A. Then AvR if and only if R does not introduce new procedures
as members and A.P v R.P for every procedure A.P in class A that is overridden by pro-
cedure R.P in class R” [15](p.47), however without demonstrating that such a definition
of class refinement is a special case or instance of the more general logical Sat-definition of
refinement as shown above. What makes this double example from Kourie’s most recent
textbook so interesting is that it shows that the question of refinement does not only occur
at object level (i.e.: refinement amongst two system specifications S and S ′) but also at the
logical meta level, such that one can reasonably ask whether or not one (specific) definition
of ‘refinement’ is a refinement of another (more general) definition of ‘refinement’. In [15],
however, Kourie has not carried out such a conceptual self-application of refinement amongst
definitions of ‘refinement’.

In [16], Liu has used the pre-weakening- and post-strengthening-rules to directly define
a notion of operations refinement. Thus he did not first define ‘refinement’ and then relate
the weakening and strengthening rules to the initial definition as it was done in [15]. With
reference to Morgan, Liu defined that for P v Q “the following two conditions must be
satisfied:
(1) pre-P ⇒ pre-Q
(2) pre-P ∧ post-Q ⇒ post-P” [16].

Later in [17], Liu has characterised refinement informally not as a timeless logical relation
but as “an activity of improving a specification by resolving non-determinism. The result
of a refinement is a concrete specification or program that does exactly what is required in
the abstract specification” [17](p.252). In this case, however, the question arises why Liu
has spoken of ‘improvement’ when the result ‘does exactly what is required’ — where is then
room for ‘improvement’? The formal definition of refinement somewhat further down the
lines in [17](p.253) was still the same as in [16].

With reference to the classical notion of operations refinement, a more precise charac-
terisation of process refinement was presented in [2] on the basis of a formal definition of
the notion of simulation. This approach requires a distinction between an ‘abstract step’
(of some abstract process) and a ‘concrete step’ (of some concrete process). Similar to the
notion of refinement in the framework of CSP (see below), the notion of refinement in that
paper was meant to “stay within a forward simulation formulation” [2] with a strong ‘flavour’
of operational (rather than denotational) semantics.

In an old reference handbook on the Z notation [23], the above-mentioned distinction
between operational refinement and data refinement was already made. In the context of Z,
both types of refinement are instances of a property-preserving specification-implementation-
relation. In the context of CSP, Roscoe has defined the notion of refinement as follows: “The
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process P can be used in any place where P uQ would work, since there is nothing we can
do to stop P u Q behaving like P every time anyway. If R is such that R = P u Q we say
that P is more deterministic than R, or that it refines R” [19].

Both refinement notions, in Z as well as in CSP, are thus based on the practical purpose
of diminishing uncertainty, or diminishing the degree of non-determinism towards ‘more
determinism’, (if I may sloppily say so), or ‘reducing non-determinism’ (as the practitioners of
Z would say). In Roscoe’s example, taking into account the disjunctive behavoural semantics
of the CSP symbol ‘u’, the logical relation is clear:

• R ‘(behaves like P )’ =⇒ R ‘(behaves like P uQ)’.

Because the property p := ‘(behaves like P u Q)’ is a formal logical consequence of the
property p′ := ‘(behaves like P )’, i.e.: p′ =⇒ p, property p′ refines property p as it was
also stipulated by Kourie’s definition in [14]. But what about the entities — in this CSP
example: the processes? According to Kourie’s definition [14], a property-difference set D
must first be determined. Let entity Ea be the process which behaves like P u Q —thus:
p(Ea) is true— and let entity Er be the process which behaves like P — thus: p′(Er) is
true. Now, according to Kourie, one must find for D “the set of properties that Er has in
addition to those in Ea” [14]. But in the chosen example process Er, which behaves like P ,
has actually less properties (i.e.: less behavioural possibilities) than process Ea which can
behave like P u Q. This leads us to the tricky philosophical-ontological question whether
there is anything such as negative properties?

In his original paper with his trivalent logic, Kourie had spoken about “false” properties
[14] in the following sense: a ‘false property’ p− of an entity E is a property p which entity
E is known not to have. But this is —philosophically speaking— not the same as a ‘negative
property’. The ground of this subtle difference is the difference between ontology, about
‘what is’, and epistemology, about ‘what we know’. The properties, particularly the ‘false’
ones, in Kourie’s treatment clearly belong to the epistemological category, whereas in the
chosen CSP example of above the ‘negative’ property clearly belongs into the ontological
category. To make both of them the same, and to bridge the philosophical gap between
ontology and epistemology, would require an additional meta-theory about the essence of
truth, i.e.: a philosophical truth theory.

The ‘negative property’ in the chosen CSP example of above can be stated as follows:
the refined process Er does not behave like Q. This allows me to define now, formally: p− :=
‘(behaves NOT like Q)’, such that for the refined process p−(Er) is true. Any ontological
committment (in the terminology of Quine) for or against the existence of negative proper-
ties has implications on the contents of Kourie’s D-set which must, according to Kourie’s
formalism, be taken into account now to conclude this related-work-based example. With
tertium non datur there are only the following two possibilities, OC versus OC’, for such an
ontological committment.

OC: Negative properties are forbidden. In this case, since p− was the only difference be-
tween processes Ea and Er in the example of above, D = ∅. Consequently it is trivially
true, from a strictly formal-logical perspective, that “every property in D refines some
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property in true(Ea)” [14], on the basis of the mathematical standard convention ac-
cording to which ‘nothing’ (∅) shall be interpreted as a special case of ‘everything’.
With this OC, and with the standard convention of interpreting ‘nothing’ as a special
case of ‘everything’, it follows indeed that the process entity Er, with property p′, is a
refinement of the process entity Ea, with property p. In this case, Kourie’s theory of
refinement [14] is indeed consistent with Roscoe’s definition and example [19] of process
refinement.

OC’: Negative properties are allowed. Since the negative property p−, according to which
Er does not behave like Q, constitutes the only difference between Er and Ea in this
example, D = {p−}. Now, however, it is no longer the case that “every property in D
refines some property in true(Ea)”, because:
Ea behaves like P uQ.
=⇒ Ea behaves like P , or Ea behaves like Q.
However D 3 p− := ‘does not behave like Q’.
Thus p− 6=⇒ ‘(behaves like P )’, and p− 6=⇒ ‘(behaves like Q)’.
Therefore p− does not refine any of the properties of Ea.

Under the assumption of the alternative ontological committment, OC’, there is thus a
counter-example, as shown above, in such a manner that Kourie’s notion of entity refinement
from [14] is not fully consistent with Roscoe’s [19] notion of process refinement. In that case,
under the assumption of OC’, Roscoe’s processes can thus not be regarded as proper ‘entities’
in the sense of Kourie’s early theory.

However, why should anybody assume OC’ and admit the existence of negative proper-
ties? Here, however, it must be noted that Kourie’s epistemological theory of existing proper-
ties which can be known to be “false” [14], i.e.: ∃(E ∈ Ent) : ∃(p ∈ Prop) : p(E) = false, can
indeed be philosophically reconciled with an ontological theory according to which negative
properties can exist. To build this reconciling bridge accross the philosophical gap between
ontology and epistemology it is only neccessary to postulate one additional meta-physical
philosophical axiom, A, which stipulates the following relation.

A: ‘It is known (epistemologically) that p(E) is false’ ⇐⇒ ‘p−(E) is (ontologically) true’

The left-hand-side of axiom A is already provided for by Kourie’s theory. The right-hand-side
of axiom A would then lead us to the prerequisite of the alternative ontological committment
OC’, on the basis of which there can be found at least one example —see above— in which
Kourie’s notion of entity-refinement differs formal-logically from another notion of entity-
refinement found in the related literature [19]. The deep ground for this subtle problem
can be found in the manner in which the two sub-notions of refinement in Kourie’s theory,
namely property-refinement and entity-refinement [14], had been conceptually connected with
each other by Kourie’s definitions. In Roscoe’s definition, on the other hand, this problem
does not even occur, since Roscoe’s notion of refinement did not make any such distinction
between entity- and property-refinement.
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3.3 Enrichment

Unlike the notions of abstraction and refinement, which are part and parcel of many stan-
dard textbooks in computer science and software engineering nowadays, Kourie’s notion of
enrichment has not yet become a familiar or widely-distributed textbook standard.

Volume 1 [4] of Bjørner’s software engineering trilogy provides a brief explication of that
notion in a glossary appendix, but does not treat enrichment explicitly and systematically
in the main body of the text. Bjørner’s glossary definition is given as follows. “Enrichment:
The addition of a property to something already existing. (We shall use the term enrich in
connection with a collection (i.e., a RSL scheme or a RSL class) — of definitions, declarations
and axioms — being ‘extended with’ further such definitions, declarations and axioms.)”
[4](p.594). As above, this definition provided by Bjørner is so vague and ‘wordy’ that it does
not lend itself easily to a logical formalisation of its contents. Consequently it is not only
hard to compare against the definition provided by Kourie [14], but it also does not show
any comparison against the conceptually related notion of refinement. In other words: in
Bjørners definition of enrichment —unlike in Kourie’s [14]— the specific difference between
enrichment and refinement has not been pointed out.

In his own most recent textbook, which he co-authored with Bruce Watson [15], Kourie
has re-defined a notion of class enrichment, on the basis of his own notion of base abstraction
[14], as follows: “(Class Enrichment). Suppose E is a subclass of class A. Then E is an
enrichment of A, written as A ve E , if and only if E introduces new members but does not
override any inherited members of A” [15](p.47).

In other words: the old notion of enrichment from [14], which had been defined on any
entities, has lately been restricted in [15] to a universe of discourse in which the entities
consist specifically of ‘classes’ from the domain of object-oriented programming. Such a
restriction on the domain of discourse also entails a modification of the mutual relation be-
tween refinement and enrichment also with regard to the relation of each of them to the
notion of abstraction. “In terms of this definition, an abstract class can be specialised in a
stepwise fashion in one of two complementary directions at each step: either by refinement
or by enrichment” [15](p.47). Here, both enrichment and refinement appear thus as (differ-
ent) instances of the notion of specialisation in the context of object-oriented programming.
“Because refinement and enrichment as defined above are mutually independent,” —note
the subtle difference between ‘mutually independent’ here and and the assertion: “Entity re-
finement and entity enrichment are mutually exclusive notions” in [14](p.176)— “one could
arrive at S by first carrying out all the necessary enrichments and then carrying out the
required refinements. In principle, this could happen in the following three steps: A ve E v
S. In [...], E is called the base abstraction of S and is characterised by the fact that none of
its members are refinements” [15](p.47).

In summary it seems fair to say that Kourie’s original notion of enrichment had been
rather ‘dormant’ during the past two decades —with only very few exceptions, such as
the one in [4]— until Kourie himself has revived that notion for a more specific domain of
discourse, namely OOP, in his most recently published book [15]. However, because his new
notion of enrichment was defined only ‘wordy’-informally in [15], it is not possible here in
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this chapter to present an in-depth formal-logical analysis of the differences (or equivalence)
between Kourie’s new [15] and old [14] versions of that notion.

3.4 Retrenchment

Retrenchment “is a more liberal formal technique, based on the main ideas of refinement,
and is intended so that some pairs of models, which cannot be related within a development
by refinement alone, can nevertheless be included within a formal development by its help”
[2](pp.301-302). Retrenchment is thus a formalised approximation to refinement, whilst
refinement is, vice versa, a special case —the exactest possible one— of retrenchment.

Already much earlier, in [18], Poppleton and Banach have identified two types of re-
finement theories, namely lattice-theoretic ones (such as Kourie’s in [14]) versus relational
ones which come close to the formal notion of simulation. This latter one, which also relies
on a notion of abstraction, is the refinement theory of concern for Poppleton and Banach:
“Relationally, refinement is characterised as a development step requiring the concrete pre-
condition to be weaker than the abstract, and the concrete transition relation to be stronger,
or less nondeterministic, than the abstract” [18]. From a practical software engineering per-
spective, however, such a ‘pure’ notion of refinement is often not satisfactory. This type of
refinement “is too restrictive to describe all but a fraction of many realistic developments” [1].
For this reason their theory of retrenchment has been developed in a long sequence of papers
of which [1] had been the first. The following paragraphs briefly recapitulate Banach’s and
Poppleton’s early retrenchment theory according to [1], such that the conceptual relation
(similarity and difference) between this notion of retrenchment and Kourie’s early notion
of enrichment [14] should become evident and obvious to the attentive reader. Generally
it should be noted that refinement, as a form of specialisation, stands in a complementary
relation to the notion of generalisation or abstraction, such that there can be at least as
many different notions of refinement as there are different notions of abstraction: a similar
point was also made in [1]. On these premises retrenchment turns out to be a somewhat
more permissive variant of refinement.

In [1] the authors “address the main problem posed by the second use of the ‘refinement’
word, namely that there is not a refinement relation in the strict sense between the idealised
high level specification, and the ‘real’ but lower level specification”. One reason, amongst
others, for such a refinement gap could be the difference between the so-called “divine”
numbers (of which the authors of [1] seemed to presume essential Platonic existence), such
as
√

2 or e or π, and their so-called “mundane” counterparts as they can be bit-represented in
some finite digital computing machinery. Whereas an abstract mathematical machine could
virtually carry out an operation such as π ·

√
2, the concrete engineering-variant could only

approximate this operation though the program code of that machine would be considerably
more complex —and in this sense a kind of ‘refinement’— than the formal specification of
its corresponding abstract machine. Retrenchment will thus be defined as “an engineering
variation on refinement” [1]. A similar argument could be made about the “divine” natural
numbers with |IN| ≈ ∞, versus the “mundane” integer numbers with |INT+| < ∞ in the
realm of engineered machines, such that no concrete I-implementation could ever be regarded
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as a refinement of a corresponding abstract IN-specification, at least not in that sense of
the notion of ‘refinement’ as it was defined in [1], namely the notion of simulation with a
diminished degree of non-determinism.

Note however that the integer set INT+ is nonetheless a specialisation of IN, because
from an extensional point of view: INT+ ⊂ IN, whereas from an intensional point of view
an additional logical constraint condition must be stipulated in order to define INT+, on
the basis of IN, in the classical Aristotelian technique of definition by genus and specific
difference as INT+ := {n | n ∈ IN ∧ n < l ∈ IN}, whereby the additional predicate
‘< l’ represents a specific difference in the Aristotelian sense. Now however, because of the
logical implication (x ∈ INT+) ⇒ (x ∈ IN), this Aristotelian specialisation is a refinement in
Kourie’s property-and-implication-based notion of refinement [14], whereas this Aristotelian
specialisation is not a refinement in the sense of Banach and Poppleton [1]. This difference
in their underlying notions of refinement must be kept in mind when comparing the notions
of retrenchment [1] versus enrichment [14] against each other: Whereas a refinement in the
sense of [1] “weakens the precondition and strengthens the postconditions of an operation” in
a simulation-preserving manner, an Aristotelian specialisation —which is closely related to
the notion of refinement in [14]— increases the information-contents of the defining intension
(intent) of a concept, and thereby typically descreases the cardinality of its extension (extent),
i.e.: the set of individual entities which can be subsumed under that intensional concept.

“Retrenchment is, very loosely speaking, the strengthening of the precondition and the
weakening of the postcondition though technically it’s more subtle than that. This is like
the opposite of refinement, except that we avail ourselves the opportunity to liberalise the
connection between abstract and concrete operations more widely. For instance not only
will we allow changes of data type in the state component of an operation, we will also allow
flexibility in the input and output components” [1](p.133). By comparison, it is this precisely
such kind of ‘flexibility’ —expressed in terms of additional information which cannot be
merely logically deduced— that Kourie had in mind when defining his notion of enrichment in
[14]. Aphoristically I may thus say that retrenchment is an enriched inversion of refinement,
whereby the enrichment is the reason for the semantic difference between a merely formal-
logical inversion of refinement and a genuine retrenchment in the sense of [1]. Formally the
notion of retrenchment is not defined ‘directly’ in simple logical terms. It is defined only
indirectly in a more complicated manner “by its proof obligations” [18] in the context of
mutually related B-machines. This implies that the very specific notion of ‘retrenchment’
is somewhat context-sensitive and might vary slightly from case to case, depending on the
specific B-machines between which some relations shall be formally proven. This should not
be too surprizing, since the very notion of retrenchment had been introduced particularly to
capture those subtle technical details which distinguish the material-real realm of computer
engineering from the formal-ideal realm of pure mathematics, and which cannot be formal-
logically deduced or inferred from an abstract initial specification. In a later paper by the
same research group a formal notion of retrenchment was presented more generally, i.e.: not
bound to the specific technique of B-machines any more [2], but still capturing the ‘gist’ of
retrenchment as an “almost-refinement” [2](p.314).
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From a science-philosophical point of view this ‘ontological gap’ between the technical-
empirical and the formal-theoretical realms, which motivated the introduction of the no-
tion of retrenchment in the first place, is conceptually related to the type difference be-
tween ‘nomological’ and ‘nomopragmatic’ statements in Bunge’s philosophy of technology
[8](pp.149-150), because the nomopragmatic statements can also not be formal-logically de-
duced from the nomological ones, though they are materially-empirically related to each
other. Beheld from a language-philosophical perspective the notion of retrenchment is char-
acterized more ‘operationally’ (in terms of ‘doing’) rather than essentially (in terms of ‘be-
ing’). However, in a similar manner by which enrichments can be composed (because of their
logical independence) according to the theory outlined in [14] and [15], also retrenchments
can be composed according to the theory outlined in [18] and further papers. In particular,
both theories provide some laws of transitivity: in [18], if some S is retrenched by some T
and T is further retrenched by some U then (under some additional conditions) S is also
retrenched by U , whilst “enrichment of entities is a transitive and irreflexive relation” such
that it “defines a strict but partial order >e on entities of Ent” in [14](p.177). However,
since every refinement can be regarded as a retrenchment (with further properties), there
are lattices of refinements and retrenchments, too.

3.5 Evolution

An early predecessor to Banach’s and Poppleton’s notion of retrenchment has been the
notion of ‘evolution’ introduced and (semi-)formalised by Liu. Similarly to Banach’s and
Poppleton’s, also Liu’s work was motivated by certain infeasibilities of ‘pure’ refinement in
the practical workflow of software engineering: “We observe that software development in
general is an evolution process. By evolution we mean a change of the operation (or system)
under its current functional constraints. For example, evolution of operation P means that P
is improved by adding more information to its pre- and/or postconditions, but not necessarily
weakening the precondition and strengthening the postcondition. We also believe that it is
necessary to distinguish evolution and the widely used term modification, where the latter
means, in this paper, that the original idea of the operation is changed to a different one”
[16](p.143). Consequently, “refinement is indeed a special case of evolution, and evolution is
transitive” [16](p.142). On the premise that “R(P, Q) denotes a property that predicate P
is equivalent to a predicate that contains predicate Q as its component but (does) not occur
as either Q ∨ ¬Q or Q ∧ ¬Q” [16](p.146), the notion of evolution had been formalised as
follows: “Let P and Q be two operations. If they satisfy all the conditions:
(1) R(pre−Q, pre−P ),
(2) ` ¬(pre−Q ⇔ false),
(3) R(post−Q, post−P ), and
(4) ` ¬(post−Q ⇔ false),
then we say that Q is an evolution of P (or P is evolved to Q)” [16](p.146). Subsequently:
“If operation P is changed to Q and Q is neither an evolution nor a refinement of P , Q is
called a modification of P (or P is modified to Q)” [16](p.146). The ‘adding of some useful
information’, regardless of the strict pre- and postcondition rules in pure refinement, is thus
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a common concept in the works of Liu [16] and Kourie [14]. In Liu’s work, however, as
remarked by Banach and Poppleton, “the concept of evolution addresses this by demanding
that the pre- and post-conditions of the abstract specification in a development step be
semantically equivalent to subformulae of those at the more concrete level. Unfortunately
since ((P ∧Q) ∨ (P ∧ ¬Q)) is equivalent to P for any Q, the ‘is a subformula of something
equivalent to’ property enables us to go from any Q to any P uncritically, tending to rob
the evolution notion of its semantic bite” [2](p.314). In his later textbook [17] seems to
have revoked or revised his earlier notion of evolution when he wrote: “An evolution of a
specification can be one of the following three activities:

• Refinement

• Extension

• Modification”

[17](p.252), in contrast to his earlier concept according to which modification “is neither an
evolution nor a refinement” [16].

3.6 Intermediate Summary

The literature review in this section has shown that Kourie’s notion of abstraction in [14]
was a quite ‘canonical’ and often-found one, though it must not be forgotten that —as
Colburn and Shute have pointed out [9]— there can be subtle differences in the notions of
abstraction in the different fields of mathematics on the one hand and informatics or software
engineering on the other hand. To make matters even more complicated, the mathematical
notion of abstraction, which comes close to the notion of abstraction in [14], can co-exist
in informatics together with the genuine informatical notion of abstraction understood as
information-hiding. In matters of refinement, however, the variety of notions found in the
literature is considerably wider, such that the notion of refinement in [14] cannot be so easily
reconciled with, for example, the notion of refinement in [1] and [18]. Of particular philo-
sophical interest in the context of Kourie’s notion of refinement is the question of negative
properties (yes or no), as it was discussed in comparison to Roscoe’s notion of process refine-
ment [19]. Finally, Kourie’s formal notion of enrichment has remained by-and-large unique
and rare during the past two decades: The seminal textbook trilogy on software engineering
by Bjørner, for example, which covers almost any conceivable aspect of software engineer-
ing on approximately two thousand pages, explicitly mentions enrichment only briefly and
informally in a glossary appendix to volume 1 [4]. Implicitly, however, some tacit notion of
enrichment seems to be at work in Banach’s and Poppleton’s related notion of retrenchment
[1] [18] which I have aphoristically dubbed as ‘enriched inversion of refinement’.
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4 Further Considerations

This section introduces alternative definitions for the three main notions from [14], i.e.: ab-
straction, refinement, and enrichment. By doing so, further semantic subleties in these three
notions shall be illuminated. The definition of ‘abstraction’ will be a traditional one accord-
ing to [25]. Both ‘refinement’ and ‘enrichment’ will then be defined w.r.t. this traditional
notion of abstraction. This section will conclude with a few (however sketchy) consider-
ations regarding the applicability of these notions in the application domain of software
product lines.

4.1 Abstraction

According to Weingartner, already Boethius (around 480-525 A.D.) and Thomas of Aquino
(1225-1274 A.D.) had distinguished two diffeent types of abstraction, namely [25]:

• abstraction of properties from individuals (in Aristotelian/Scholastic terminology: ab-
straction of ‘form’ from ‘matter’), as well as

• abstraction of the general from the specific.

Rephrased in modern terminology, their first type of abstraction may correspond both to
the notion of class abstraction (or extensional abstraction) [25] as well as to the notion
of property abstraction (or intensional abstraction) [25], whereas their second type of ab-
straction relates to the notion of generalisation through quantification [25]. For example: if
S := {apple, ball, car}, then the number 3 = |S| would be an abstraction of S in that second
sense of the term. (The previously mentioned example, in which ‘fleet’ is regarded as a ‘set
of ships’, is not covered by this notion of abstraction. Nominalistically one could simply
regard ‘fleet’ as a name for ‘set of ships’.)

In any type of abstraction one can further distinguish the activity of abstracting (some-
thing from something) and the result of such an activity. The latter one is called an abstrac-
tum [25], whereas the relictum [25] remains as the ‘left-over’ of such an abstraction. To be
even more precise, Weingartner distinguished two types of relictum, namely a less concrete
‘relictum1’ and a more concrete ‘relictum2’, for both extensional and intensional types of
abstraction [25]. These concepts are illustrated by the following example cases.

Extensional Abstraction (for enumerable things): the cars.

Relictum1: the other vehicles (e.g.: bikes).

Relictum2: the roadsters.

Intensional Abstraction (for non-quantifiable concepts): culture.

Relictum1: nature.

Relictum2: literature.
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From these examples it can be learned there is always some kind of ‘is-a’ (inclusion or
implication) relation between a relictum2 and its corresponding abstractum, however not
between a relictum1 and its corresponding abstractum, and also not between an abstractum
and its relictum1. Relictum2 is thus always ‘more concrete’ than its corresponding abstrac-
tum, because from relictum2 the abstractum has actually been abstracted. Also note that,
according to the definition in [25], relictum1 is not necessarily simply the negation of the
abstractum: as shown by the vehicle example of above, relictum1 (‘the other vehicles’) still
shares a vehicle-ness property with its corresponding abstractum (‘the cars’). Also note that
the notions of relictum, as in [25], are relative (not absolute) notions, namely in relation to
some ‘universe of discourse’ out of which entities and abstractions can be taken.

In OOP the relation between super-class and sub-class is similar to the relation between
abstractum and relictum2 in extensional abstraction if the super-class is also instantiatable
and not an abstract class from which no objects can be generated. Un-instantiatable abstract
classes in OOP would belong to the category of intensional abstraction. Without any need
for constructing particular entity-property-tuples for a particular domain of discourse (as
proposed in [14]) those various relations of abstraction can be formalised simply for arbitrary
models (extensions). Similar to the notation in [25], let A be a set and A− its complement
set. Moreover, let the somewhat un-canonical notation ‘{e|e ∈ A}’ be understood as a
so-called comprehension construction according to [20], alternatively written as ‘{e|A(e)}’,
which yields a set of entities for which some attribute or assertion holds true [20] (similar
to the property-based considerations found in Kourie’s paper [14]). Then one can define,
according to [25],

Extensional Abstraction: “{e|e ∈ A}”, see [20]. In this case an abstraction is charac-
terised as a (sub) set of elements with

“Relictum1: {r| ∃R : (R ⊂ A− ∧ r ∈ R)}”, see [25].

“Relictum2: {r| ∃R : (R ⊂ A ∧ r ∈ R)}”, see [25].

Intensional Abstraction: “{P |A ⊆ P}”, see [25]. In this case an abstraction is charac-
terised as a (sub) set of properties (or qualities or attributes) with

“Relictum1: {Q| ∃A : (A ⊂ A− ∧ A ⊆ Q)}”, see [25].

“Relictum2: {Q| ∃A : (A ⊂ A ∧ A ⊆ Q)}”, see [25].

In the philosophical definitions of [25] the scopes of A and Q (i.e.: the ‘universe of dis-
course’) were not specified. Of course such specifications would need to be provided for the
computable technical applications of logics in software engineering. The examples of above
—with the cars, the roadsters and the other vehicles— should suffice to illustrate the in-
tended meaning of the relictum definitions from [25], even though also those definitions were
not completely formalised in [25]. Particularly in the case of extensional abstraction, which
is the relevant notion of abstraction for this chapter, it must be demanded that R 6= ∅ 6= A−,
otherwise the word ‘abstraction’ would not be appropriate to the notion it is meant to cap-
ture. Particularly by ∅ 6= A− the trivial-universal ‘anything’abstraction is excluded.
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Those classical definitions of ‘abstraction’ are clearer and more consistent than the ex-
plication found in [14](p.175) which stated that “Ej is defined as an abstraction of Ei iff
true(Ej) is a subset of true(Ei)” — such a definition is ontologically and categorially ques-
tionable, because two elementary things (Ei, Ej such as: my red car, your blue van) in an
extension E (or ‘domain of discourse’ in the terminology of [14]) cannot sensibly be ‘ab-
stractions’ of each other, unless one would be willing to do violence to our common use of
language as far as the typical meaning of the term ‘abstraction’ [25] in the philosophy of
science is concerned. Thus, the common use of the word ‘abstraction’ only relates to sets
of entities, not to individual entities, in a similar manner in which the word ‘temperature’
in physics relates meaningfully only to sets of molecules (e.g., a gas) but not to individual
molecules as such. Indeed, one reason for the conceptual vagueness in [14] was insufficient
distinction between intensional and extensional abstraction as well as unclarity as far as the
two different types of relictum(1,2) from [25] are concerned.

In the following, as mentioned above, the notion of abstraction will be restricted to
extensional abstraction, because software engineering is meant to construct ‘things’ (e.g.:
programs, code-objects, etc.) which can be explicitly contained and enumerated in concrete
sets. Intensional notions, since the era of the Scholastic philosophy also known as universals,
cannot be materialised in a software-engineering manner.

4.2 Refinement

Colloquially one may say that refinement makes under-determined definitions (descriptions,
specifications, stipulations) more determined. Refinement is thus a step from the more
abstract to the more concrete, by being more specific in the descriptions of the objects to
be captured with logical concepts — an example was given in the CSP-discussion of above.
Having defined a notion of abstraction formally in the previous sub-section, the formalisation
of a related notion of refinement now follows easily.

Definition: Given an abstractum A, a relictum2 of A is a refinement of A.

Note that this is a purely semantic definition of the notion of refinement which does not
stipulate anything about how any such refinement shall be represented syntactically in the
notation of a formal specification of a desired extensional artefact. Here is thus another
difference with regard to [14] where the notion of refinement had been defined in a calculus
of logical implications (=⇒) and predicates. Typically one can achieve semantic refinement,
whereby an extension shrinks, by means of some syntactic ‘enrichment’ whereby its lexical-
syntactic description (i.e., its intension) grows [26], through the conjunctive insertion of
further conditions and constraints into its notational specification. However it is also well-
known that not every explicitly given concrete set S is characterised analytically by a defining
membership predicate PS —try, for example, to find a concise ‘formula’ for a logical predicate
PS(n) to define exactly the set S := {

√
2, 7} without petitio principii— such that the logical

restriction P ′
S := PS ∧ C of PS with a conjugated constraint C is only a sufficient —not a

necessary— way of yielding semantic refinement in a given extension. Anyway, as shown in
the definition of above, the two notions of abstraction and refinement are closely (namely
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inversely) related to each other through the mediating notion of the second relictum. An
illustrative example is shown in a sub section further below.

4.3 Enrichment

As previously discussed, a theoretical notion of ‘enrichment’ was the main novel contribution
of [14] at the time of its publication. Alas, due the peculiar choice of a trivalent logic in
[14], the effects of the third truth value ⊥ on the mathematical-logical semantics of the term
‘enrichment’ remained unclear (in contrast to its intended intuitive meaning).

With the notions of ‘abstraction’ and ‘refinement’ on the basis of [25] as provided in
the previous sections, it will be easy to re-define and formalise ‘enrichment’ precisely and
concisely, too. Thereby, however, care must be taken not to miss the originally intended
meaning of ‘enrichment’ in [14]. Whereas a refinement of some extension E simply yields a
sub set ER ⊂ E , it is not the case that an enrichment would simply yield a super set EE ⊃ E
in such a way that enrichment would naively appear as inversion of refinement. As indicated
in [14], the relations between those notions are somewhat tricky.

Definition: Let an extension of entities, E, be a (second) relictum2 of some abstractum A,
and let E ′ := E ] E ′′. If E ′′ is a proper subset (⊂) of the (first) relictum1 of A, then
E ′ is an enrichment of E.

Once again this is a purely semantic (extensional) definition of the notion of enrichment
which does not stipulate anything about how such enrichments can or must be denoted
syntactically in terms of a formal system specification or calculus. There may be different
ways of yielding semantic enrichment through the various syntactic features of a formal
specification system.

Note that E ′′ must not be allowed to be identical with relictum1 ofA, because otherwiseA
itself would be the (trivial) ‘enrichment’ of E —contrary to the original ideas and intentions
expressed in [14]— whereby empty extensions E = ∅ are (at least formally) allowed, (such
that (E = ∅)]A would be the formal characterisation of such a trivial pseudo enrichment).
Because the first and the second relictum of any abstractum A are disjoint, the definition
of above respects the requirement of ‘independence’ in Kourie’s original definition [14] of
‘enrichment’. Moreover, also Kourie’s requirement of common properties in his original
notion of enrichment is fulfilled by the definition of above, namely by the abstractum A to
which both the first and the second relictum are semantically related.

Last but not least also note that ‘proper subset’ is itself a (second) relictum2 —i.e.:
a ‘refinement’— if one regards the (first) relictum1 of A as an abstractum Â in its own
right. This implies that the two notions of refinement and enrichment are closely related
and interwoven with each other, in contrast to Kourie’s idea that “entity refinement and
entity are mutually exclusive notions” [14].
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4.4 Example

Let ZZ be the abstractum of all integer numbers, (with symbol ZZ for German Zahl, i.e.
number).

• Relictum2 IN is a refinement of ZZ which is characterized analytically by the following
intensional refinement condition (specification): if n ∈ IN then n ∈ ZZ and n > 0.
This example shows that, in refinement, the extension is shrinking whilst the inten-
sion is lexically growing by the logical conjunction (never disjunction) with additional
constraints [26].

• Moreover, IN0 := IN ] {0} is an enrichment of IN with 0 ∈ ZZ\IN. If IN is regarded as
an abstractum on its own, then 0 ∈ relictum1 of IN.

Note that, at least from a classical (non-constructivist) point of view, IN (as a set) would
still be a (semantic) refinement of ZZ (as a set) even if nobody could find a concise analytic
characterisation of a logical refinement condition (such as n > 0) at the syntactic level
of a specification. Thus it is not necessary to define the notion of refinement in terms of
predicates and material implications (P , =⇒) as it was done originally in [14]. For related
opinions about replacing intensional by extensional characterizations see [27]. For example
the pseudo predicate P (x) := ‘the input x which drives the Universal Turing Machine into
divergence’ is not well-defined (otherwise the general halting problem would be solved), or,
as Frege would have said: it has got ‘sense’ but it does not have ‘meaning’ [11] — though
it is known that at least one such number x must exist and that the set of all those xs is
indeed a proper subset of ZZ.

4.5 Software Product Lines

According to Carnegie Mellon’s Software Engineering Institute (SEI), “a software product
line (SPL) is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” [29]. In this definition
three occurrences of the term ‘set’ can be found, namely:

• set of systems,

• set of features,

• set of core assets,

such that this set-based definition of SPL should be amenable to a rational reconstruction
in terms of set-based notions of abstraction and/or enrichment as discussed in the previous
sections of this chapter. Most important in SEI’s definition of SPL are the set of systems
and the set of features, as they form the synchronous part of that definition (whereas the
diachronous-genealogical explication that these two sets had their origin in some common
set of assets is so not relevant in the context of this chapter). SEI’s definition, however, does
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not clarify whether or not all systems in the system set together have at least one common
feature, or if only any two systems in the system set have at least one common feature
pairwise. The latter situation would be an instance of Wittgenstein’s notion of ‘family
resemblance’ (in the German original: Familienähnlichkeit) in his posthumously published
Philosophical Investigations [28]. The difference between the two notions, about which SEI’s
definition of SPL does not make a very clear statement, is illustrated in the following figures.
If a system is simply regarded as a set of features, then a SPL as a set of n systems {S1, . . . Sn}
could have the property

⋂
i Si 6= {} (i = 1, . . . , n) which could be called a tightly related SPL.

Alternatively it could be characterised by the property
⋂

i Si = {} (i = 1, . . . , n) whereby
∀i ∈ {1, . . . n} ∃j ∈ {1, . . . n} with i 6= j and Si ∩ Sj 6= {} pairwise, which could be called a
‘Wittgensteinian’ or family-resemblance-SPL. Anyway, in both cases one can clearly interpret
each system Si of a given SPL as an abstractum (of its feature extension) in terms of the
definition of above. Consequently one can also say that a system Si refines another system
Sj in a given SPL, if the extension of features of Si is a proper sub set of the extension of
features of Sj — or, in software engineering jargon: Si is ‘more elegant’ and ‘less cluttered’
than Sj. Vice versa one can say that a system Sj enriches another system Si in a given
SPL, if both the feature extensions of Si and Sj fulfill the relictum conditions as formulated
above.

Last but not least, however, I must admit that the foregoing considerations on SPL are
somewhat idealised. Moreover, the ‘features’ listed in SPL need not always be immutual
atomic entities: there may also be abstract features in the form of object-oriented classes
with polymorphic types which call for specific instantiations in the production of particular
products or product variations.

5 Summary and Outlook

After having discussed Derrick Kourie’s notion of abstraction [14] and several related con-
cepts, I have presented in this chapter a more classical notion of abstraction on the basis of
some standard texts from philosophy of science [22]. Also these concepts were presented from
an extensional perspective under the classical presumption that any item belongs somehow
decideably to some set. Thereby the question, how to decide constructively to which set a
given item belongs, was not asked. It was indeed not even necessary to ask that question
for the simple purpose of defining or re-defining the notions of refinement and enrichment
in the context of this chapter, because I have taken the items as given and have defined any
abstractions on the basis of the given items — not, as in [14], starting with some abstract
property predicates P to which one would then possibly not find any extensional items in
existence. Nevertheless it should not be forgotten that there exist sets which are recursively
inseparable [21], though such inseparable mathematical sets —of which the famous Mandel-
brot and Julia sets are some particularly intuitive examples— are typically not relevant in
the practical software engineering domain with its countable number of finite and discrete
entities.

Related to the notion of (extensionally) inseparable sets is the notion of (intensionally)
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vague predicates [24] for the formalisation of which also trivalent logics —similar to Kourie’s
suggestion [14]— had earlier been proposed [24]. However, a trivalent logic is not the only
possible logic to capture the intensional notion of vague predicates: as further described in
[24], even multivalent logics (with numerical truth values) had already been proposed for
that purpose. Further related to the classical notion of vague predicates is nowadays also
the notion of rough sets [13] which are receiving more and more attention in the field of
information systems and their so-called ‘ontologies’. Rough sets are sets with ‘borderline
cases’ of membership, i.e.: entities for which it is not possible to distinguish sharply whether
or not they belong (perhaps even partly) to a given rough set. As further explained in
[13], the notion of a rough set consequently leads to a modified notion of (rough) inclusion,
⊆r, which differs slightly in its semantics from the classical notion of set inclusion, ⊆. On
the basis of such a modified notion of inclusion, ⊆r, a new axiomatised calculus of rough
set theory can be formulated [13] which may have a variety of its own semantic models:
typically discrete models, but also over-countably continuous ones. Because the notions
of abstraction, refinement and enrichment were presented in this chapter as semantic and
extensional (not axiomatic-syntactic or intensional) notions on the basis of classical entity
sets and their inclusion relation, ⊆, it follows intuitively that it should not be too difficult (for
future work) to provide some new related notions of rough refinement and rough enrichment
on the basis of the rough set theory and its particular notion of rough set inclusion, ⊆r.

Finally I may remark that the set inclusion relation, ⊆, which forms the basis of the
definitions of refinement and enrichment in this chapter, can —obviously— be used as a
model (interpretation) of a lattice order relation, �, with the empty set {} :=⊥ and the
universal set {x| ∃P : P (x) = true} := > as the lattice’s extreme elements. Indeed, the
two figures from above’s sub-section on product lines can be easily transformed into their
corresponding formal concept lattices, as per [10], with the SPL’s systems Si as FCA’s
objects and with the SPL’s features as FCA’s properties or attributes. The related notions
of relictum, refinement and enrichment can thus all be expressed and explained in Kourie’s
favourite theory, FCA, as well.
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